Subject: Mathematics
Course Code: Math-305ME (Old)
Full Marks: 40

Course ID: 32155
Course Title: Dynamical System (Old)
Time: $\mathbf{2}$ Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

Answer any five questions.
$8 \times 5=40$

1. (a) Write down the conditions for existence of unique solution of the following system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a_{11}(t) x+a_{12}(t) y+F_{1}(t) \\
& \frac{d y}{d t}=a_{21}(t) x+a_{22}(t) y+F_{2}(t) .
\end{aligned}
$$

(b) Find the solution of the homogeneous linear system
$\frac{d x_{1}}{d t}=4 x_{1}-x_{2}$
$\frac{d x_{2}}{d t}=x_{1}+2 x_{2}$.
2. Consider the linear system
$\frac{d x_{1}}{d t}=x_{1}+3 x_{2}$
$\frac{d x_{2}}{d t}=3 x_{1}+x_{2}$.

Find the solution of the corresponding uncoupled system and sketch the phase portrait in both x-plane and y-plane.
3. (a) Define hyperbolic and non-hyperbolic equilibrium point.
(b) Consider the non-linear system
$\frac{d x_{1}}{d t}=-2 x_{2}+x_{2} x_{3}-x_{1}^{3}$
$\frac{d x_{2}}{d t}=x_{1}-x_{1} x_{3}-x_{2}^{3}$
$\frac{d x_{3}}{d t}=x_{1} x_{2}-x_{3}^{3}$.

Check whether the trivial equilibrium point is hyperbolic or non-hyperbolic. Also investigate the stability of the equilibrium point.
4. (a) State the Bendixson-Dulac'scriterion for non-existence of close orbit.
(b) Investigate the global stability of the equilibrium point of the following system of equations
$\frac{d x}{d t}=\sigma(y-x)$
$\frac{d y}{d t}=r x-y-x z$
$\frac{d z}{d t}=x y-b z$.
5. Consider the Van der Pol equation
$\frac{d^{2} y}{d t^{2}}-\mu\left(1-y^{2}\right) \frac{d y}{d t}+y=0$.

Transform the above second order equation as a first order system of equations. Determine the steady state(s) and their stability. Also discuss whether the system undergoes Hopf bifurcation for gradual changes in the parameter μ.
6. (a) Consider the difference equation

$$
x_{n+1}=f\left(x_{n}\right) .
$$

Discuss about the local stability and asymptotic stability of a fixed point of the above difference equation.
(b) Consider the logistic difference equation
$x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$ when $\mu>0$.
Find the fixed points and investigate their stability.
7. (a) Find the solution of the difference equation
$x_{n+1}=2 x_{n}+5^{n}, \quad x_{1}=\frac{1}{2}$.
(b) Solve the following system of difference equations
$x_{n+1}=6 x_{n}-3 y_{n}$
$y_{n+1}=2 x_{n}+y_{n}$.
Also check the stability of the solution.
8. (a) Consider the non-linear difference equation
$x_{n+1}=x_{n}^{2}+3 x_{n}$.
Find the equilibrium points and determine their stability.
(b) Consider the system of non-linear difference equations
$x_{n+1}=2 x_{n}-y_{n}^{2}$
$y_{n+1}=y_{n}-5 x_{n}^{2}$.
Find the equilibrium points and determine their stability.

